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Sdhueiohio peremetors 1. Attribution of Regional Contributions to Climate Change in Java Climate Model JCM5

and curve sets

This poster introduces some calculations made with Java Climate Model (JCMS5) regarding regional contributions to climate change, as part of the international intercomparison process “ACCC?”, later evolving to “MATCH”, set up in
response to the request of the UNFCCC SBSTA for assessment of “Scientific and Methodological Issues” relating to the Brazilian Proposal. The latter proposed to apply the “polluter pays principle” to budren sharing in the global
climate negotations, and therefore required a relatively simple and transparent way of calculating the relative contribution of each country to global temperature rise.
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